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Abstract. Multivariate signals measured simultaneously over time by sensor net-
works are becoming increasingly common. The emerging field of graph signal
processing (GSP) promises to analyse spectral characteristics of these multivari-
ate signals, while also taking the spatial structure between the time signals into
account. A core idea in GSP is the graph Fourier transform, which projects a mul-
tivariate signal onto frequency-ordered graph Fourier modes and can be regarded
as a spatial analogue of the classical Fourier transform. This chapter derives and
discusses key concepts in GSP, with a specific focus on understanding the differ-
ences between parallel formulations and the interconnections between the various
concepts. The experimental section focuses on the role of graph frequency in data
classification, with applications to neuroimaging. To shed light on graph frequen-
cies individually, sample sizes larger than those of relevant empirical datasets are
needed. We therefore introduce a minimalist simulation to generate sufficiently
many signals, which share key characteristics with neurophysiological signals.
Using this artificial data, we find that higher graph frequency signals are more
suitable for classification as compared to lower graph frequency signals, and pro-
pose GSP mechanisms to explain our findings. Finally, we present a baseline
testing framework for GSP. Using this framework, our results suggest that GSP
may be applicable for dimensionality reduction in neurophysiological signals.

1 Introduction

Multivariate signals are composite signals that consist of multiple simultaneous sig-
nals, typically time signals. They can be either directly acquired using arrays of spa-
tially separated sensors [1], or inferred using more complex recording techniques, such
as magnetic resonance imaging [2]. The lowering cost of sensors has made multivari-
ate signals ubiquitous, which highlights the importance to develop or improve tools
to process these signals [3–5]. Examples of multivariate signals are as diverse as tem-
perature measurements at different geographic locations [6], pixels in images or digital
movies [7], or the measurement of process variables in nuclear reactors [8]. Multivariate
signals are also common in various biomedical imaging applications, such as electroen-
cephalography (EEG) [9], electrocorticography [10], magnetoencephalography (MEG)
[11], or functional magnetic resonance imaging (fMRI) [12]. This book chapter will
focus primarily on multivariate EEG signals.
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Unlike time or spatial signals, multivariate signals can capture the characteristics of two
dimensions of the measured system. In EEG, sensors are placed on various locations on
the scalp of the brain [9]. Each sensor, also called channel in this context, measures the
electric field potential in time at its location, giving information about the dynamics of
the electric activity. On the other hand, the electric activity of all sensors at one point in
time provides information about the spatial characteristics of the system.

EEG recordings are most commonly analysed as time signals using conventional signal
processing [13]. Historically, one fruitful approach has been the use of power spectral
density estimates to extract spectral features for each channel. These features can be
used to quantify the power of widely recognised brain waves, such as alpha (8-12 Hz),
beta (12-35 Hz), gamma (>35 Hz), delta (0.5-4 Hz), and theta (4-8 Hz) waves [14]. The
extent of these brain waves, together with their position on the scalp, have been shown to
be useful biomarkers for Alzheimer’s disease [15], sleep apnea syndrome [16], social
anxiety disorders [17], or even performance in sport [18]. However, numerous other
features can be extracted from the time signals, which can be both linear and non-
linear. For example, non-linear summary metrics such as the Lyapunov exponent may
predict the onset of epileptic seizures [19]. A second, traditional method to analyse
EEG recordings in time is to relate the electrical activity to specific events such as task
stimuli [20]. The electric potential can be averaged to yield the so-called event-related
potential (ERP). The amplitude of the ERP at specific time delays for relevant tasks has
been shown to be affected by disorders such as alcoholism [21] or schizophrenia [22].

Alternatively, multivariate signals can be analysed along their spatial dimension. This
type of analysis rests on the assumption that the measured system has a connectiv-
ity structure, either static or changing with time, which causes some of the signals to
be pairwise correlated. For example, Peters et al. analysed the connectivity structures
retrieved from EEG recordings with tools from graph theory, allowing them to charac-
terise autism [23]. Similarly, Atasoy et al. analysed the connectivity structure in fMRI
recordings using spectral graph theory and were able to link the resulting harmonic
waves to connectome networks. A comprehensive review of graph analysis methods for
neuroimaging applications is given by Fallani et al. [24].

However, both the temporal and the spatial analysis of multivariate signals neglect pos-
sible spatio-temporal features in these signals, i.d., features that are both present in the
temporal and spatial domain. Due to this shortcoming, graph signal processing (GSP)
has emerged as a new promising framework that analyses the signals in time in de-
pendence on their graph structure [25, 26], thereby taking both domains into account
simultaneously. One core idea behind GSP is to transform the data across space based
on the connectivity structure, before processing the signals with conventional tools.
This spatial transformation is also called the graph Fourier transform (GFT), following
its classical counterpart. GSP has been successfully employed for neurophysiological
imaging, such as fMRI [27–30] or EEG [31–33], which will be discussed in more detail
in section 3. Comprehensive review articles of GSP are those of Shuman et al. [34] and
Ortega et al. [25], while Stanković et al. [5] may be a good resource for readers looking
for a more intuitive introduction into GSP.
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Currently, the ambiguity of the connectivity structure [35] and how this structure is used
may be a significant limitation of GSP, given that the connectivity structure is an essen-
tial building block in this theory. Addressing this challenge will be a central theme in
this book chapter. To this end, the theoretical section aims to derive GSP concepts from
basic principles, juxtapose the alternative formulations in GSP, and explore links be-
tween them. On the other hand, the experimental section showcases a strong validation
procedure using a novel baseline framework, which is needed in light of these ambigu-
ities. It further shows how simulations can help to understand mechanisms in GSP by
overcoming the data scarcity commonly observed in empirical datasets.

The experiment itself evaluates the role of graph frequencies of GFT-transformed sig-
nals, which may aid in GSP-based dimensionality reduction for neurophysiological sig-
nals. Our work complements a study by Ouahidi et al., which aimed to select the most
valuable graph frequencies for fMRI decoding [36]. In our study, we classified each
graph frequency signal separately using a support vector machine (SVM), allowing us
to determine the classification accuracy with respect to graph frequency. Our analysis
of the results, aided by the carefully designed baseline framework, finally revealed that
the superior performance of high-frequency transformed signals can be attributed to the
graph structure.

The book chapter is organised as follows: Section 2 gives a mathematical introduction
into GSP by firstly covering graph terminology and basic principles, before deriving key
concepts in GSP. Section 3 relates these theoretical concepts to neuroimaging. While the
first three subsections cover the background for neuroimaging with GSP, the following
subsections illustrate several applications of GSP in this field. Section 4 draws important
links between the graph retrieval methods and graph representations, both generally as
well as applied to neurophysiological signals. Section 5 commences the experimental
part of this book chapter and covers the methodology of our experiment, comprising the
simulation of the data, the classification model, the testing and the baseline framework.
The subsequent section 6 present the results of our study, while section 7 discusses these
results. The last section 8 summarises the book chapter and proposes future directions.

2 Concepts in Graph Signal Processing

In this chapter, GSP concepts are developed in analogy to classical signal processing,
following work by Sandryhaila et al. [37]. Figure 2 gives a comprehensive overview of
the relations between the relevant concepts in classical signal processing and how they
are extended to GSP. Importantly, this extension is ambiguous and leads to two separate
definitions of the GFT, from which some of the other concepts are derived.

2.1 Graph terminology

Formally, networks can be represented by a weighted graph G := (V,A), which consists
of N vertices V = {1,2,3, ...,N} and the weighted adjacency matrix A ∈ RN×N . The
entries ai j of A represent the strength of the connectivity between node i and node j. If
the connectivities between each pair of nodes are symmetric, or ai j = a ji for any i and j,
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then A is symmetric and the graph is said to be undirected; in the other case, the graph
is said to be directed. Furthermore, if the diagonal elements aii are all zero, meaning
that the nodes are not connected to themselves with loops, the graph is called a simple
graph. Figure 1(A) depicts a weighted directed simple graph with N = 6 vertices.

A second, useful representation of a graph G is its Laplacian matrix. The Laplacian can
be directly computed from the adjacency matrix A as L = D−A. Here, D = diag(A ·1)
denotes the degree matrix. Alternatively, the symmetric normalised Laplacian can be
used instead of the Laplacian, which is computed as Lnorm = D−1/2LD−1/2. While the
weighted adjacency matrix can be viewed as a graph shift operator (GSO, section 2.2),
the Laplacian can be associated with the negative difference operator (section 2.3).

A multivariate signal X∈RN×Nt is a data matrix consisting of N univariate signals each
of length Nt , typically temporal signals. We denote the univariate signal at node i by xi∗.
The rows of X, on the other hand, correspond to graph signals and contain one value
for each node on the graph. We denote the graph signals as either x or more explicitly
as x∗ j, where j is the column index.

2.2 Graph shift operator (GSO)

The weighted adjacency matrix is the canonical algebraic representation of a graph.
This subsection further explores the role of the adjacency matrix as a GSO and its
implications for graph dynamics. In particular, these graph dynamics are capitalised for
generating the artificial multivariate signals in subsection 5.1.

In discrete signal processing (DSP), a cyclic time signal s with N samples can be rep-
resented algebraically by a time-ordered vector s = (s0, ...,sN−1)

⊤, where s0 and sN−1
are the time samples at the first and the last time step, respectively. The shift operator
T1 shifts each time sample sn to the subsequent time step,

T1 : (s0, ...,sN−1)
⊤ 7→ (sN−1,s0, ...,sN−2)

⊤,

and can be algebraically represented by the cyclic shift matrix

Ac =


0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0

 . (1)

Note that the last time sample sN−1 is shifted to the first time step, as we assume the
time signal to be cyclic.

Importantly, Ac can be interpreted as the adjacency matrix of a graph with a linear
topology with N vertices, as shown in Figure 1(B). The interpretation of the discretised
time dimension as a linear time graph allows to generalise the shift operator to more ar-
bitrary graph topologies, such as the one shown in Figure 1(A). Consequently, the GSO
of a graph is simply given by its weighted adjacency matrix A. Applied to a graph sig-
nal x, the adjacency matrix spatially shifts a signal at node i to its neighbouring nodes,
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Fig. 1: (A) Graph with six nodes, which can be represented by an adjacency matrix A.
The displayed connections are directed, meaning that they can go in both directions.
They are also weighted, which is indicated by the line width of the arrows. The graph
can represent an arbitrary spatial graph topology of a multivariate signal acquired from
a measurement system with six sensors. (B) Time graph with linear topology. The graph
connects each time step ti to the subsequent time step ti+1, thereby shifting a signal in
time. For periodic signals, the last time step is connected to the first time step. The graph
can be represented by the cyclic shift matrix Ac

weighted by the strength of the connection. The GSO may also be used to model graph
dynamics. This follows the assumption that the time evolution from one time step to the
next corresponds to a scaled graph shift, that is, the GSO is taken to be a “time evolu-
tion operator”. However, this crude approximation only describes the dynamics of the
signals which are due to the connectivity structure. Nevertheless, this characterisation
of the GSO proves to be useful to simulate a multivariate signal in subsection 5.1. A
more sophisticated way to ascribe the graph dynamics to the connectivity structure is
to model the dynamics as a heat diffusion process [35], which involves the Laplacian
operator. The Laplacian operator itself is based on the GSO, as shown in the following
section 2.3.

2.3 Laplacian as negative difference operator

In discrete calculus, the operator ∆ defines a forward difference in terms of the shift
operator T1 and the identity operator I:

∆ = T1− I.

In the case of a finite, cyclic signal, the shift operator can be represented algebraically
by the cyclic shift matrix Ac as defined in equation (1), while the identity operator can
be represented by the degree matrix Dc = 1. The negative forward difference operator
−∆ can then be represented by the Laplacian matrix Lc:

Lc = Dc−Ac.
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Likewise, the second-order central difference operator ∆ 2 is given in terms of the right
shift operator T−1:

∆
2 = T1−2I +T−1

T−1 : (s0, ...,sN−1)
⊤ 7→ (s1, ...,sN−1,s0)

⊤.

The right shift operator T−1 can be represented algebraically by the transposed adja-
cency matrix A⊤c , such that the operator −2∆ 2 can be represented by the symmetrised
Laplacian matrix

Lc,sym = Dc−
(
Ac +A⊤c

)
2

.

shift
operator

TV

derivative-based
interpretation

DFT

filter-based
interpretation

DFT

convo-
lution

digital
filter

graph
shift operator

edge
TV

node
TV

derivative-based
GFT

(Laplacian)

filter-based
GFT

(adjacency)

graph
convolution

graph filter
(adjacency)

graph filter
(Laplacian)

graph extension

by analogy

Fig. 2: Interconnections between discrete signal processing (DSP) concepts and its
graph extensions. In DSP, the discrete Fourier transform (DFT) can be traced back to
the shift operator. Crucially, a derivative-based interpretation and a filter-based inter-
pretation of the DFT are equivalent. The total variation (TV) increases with increasing
Fourier frequency, thereby linking the two concepts. Convolution and digital filters are
built on the concept of the shift operator, whereby the digital filter can be expressed
using the DFT. Extending the shift operator to graphs allows to build analogous con-
cepts for graphs. Importantly, the derivative- and the filter-based graph Fourier trans-
form (GFT) are not equivalent. The graph Fourier modes in both GFT variants can be
ordered by their frequency using either the edge-based or the node-based TV. The graph
convolution can be used to define an adjacency matrix-based graph filter. The similar,
Laplacian matrix-based graph filter can only be constructed by analogy and is not di-
rectly linked to the graph convolution

2.4 Graph Fourier Transform (GFT)

The GFT is an extension of the Fourier transform to graphs and is at the heart of GSP.
Here, we show that it can be derived either via graph filtering (filter-based GFT) [25,
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38] or via discrete derivatives on graphs (derivative-based GFT) [38, 39]. Both these
approaches are built on the extension of the shift operator to graphs, i.d., the GSO
given by the adjacency matrix A. While both approaches yield the same result in DSP,
their extensions to GSP turn out to be slightly different: The derivative-based GFT is
composed of the eigenvectors of the adjacency matrix, whereas the filter-based GFT is
composed of the eigenvectors of the Laplacian matrix.

The two approaches mirror the two definitions for the total variation in section 2.5.
Section 4.2 shows theoretically why the two approaches can nevertheless be similar to
each other in some practical applications.

Filter-based Graph Fourier Transform The derivation in this subsection follows
Sandryhaila et al. [40] and Ortega et al. [25]. Let s be a time signal represented by a
time-ordered vector s = (s0, ...,sN−1)

⊤ and T1 a shift operator represented algebraically
by Ac, as defined in equation (1). A finite impulse response filter h of order N can be
characterised as a sum of the N samples sin[n− i mod N] preceding the time step n,
weighted by pi:

sout [n] = (h · sin)[n] =
N−1

∑
i=0

pisin[n− i mod N].

Importantly, this means that the filter h can be represented as a N-th order polynomial
in the time shift operator T1, as defined in subsection 2.2:

h =
N−1

∑
i=0

piT i
1 .

Algebraically, the filter is given by the matrix H as a polynomial in the cyclic shift
matrix Ac as defined in equation (1):

H =
N−1

∑
i=0

piAi
c.

The eigenvectors of Ac are the complex exponentials vk = (ω0,ωk, ...,ω(N−1)k)⊤/
√

N,
with ωk = e2π jk/N and the imaginary unit j =

√
−1. The eigenvalue for each complex

exponential vk is ωk. Consequently, the eigendecomposition of Ac is given by:

Ac = QcΛcQ−1
c = (v1,v2, ...,vN)


ω0

ω1

. . .
ωN−1

(v∗1,v∗2, ...,v∗N)⊤. (2)

Crucially, the matrix Q−1
c , comprising the complex conjugated exponentials vk, can be

identified as the discrete Fourier transform (DFT) matrix.
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The eigenvectors vk of Ac are also eigenvectors of the filter matrix H,

Hvk =
N−1

∑
i=0

piAi
cvk =

(
N−1

∑
i=0

pi

(
ω

k
)i
)

vk, (3)

which of course is the well-known fact in DSP that filters can change the magnitude or
the phase of a sinusoidal signal, but not its frequency.

The central role that the shift operator plays in constructing the filter and its relation
to the DFT justifies to define the GFT in terms of the GSO, which can be represented
algebraically by the adjacency matrix A (see subsection 2.2). In analogy to DSP, the
filter-based GFT for a spatial signal x ∈ RN on a graph A is defined using the eigende-
composition A = QAΛAQ−1

A :

x̃ := Q−1
A x, (4)

where x̃ is the transformed spatial signal. The eigenvalues λk of A are the diagonal
elements of ΛA. If A is symmetric, they are real-valued and can be sorted in ascending
order, and the eigenvectors vk become orthogonal.

However, other matrices, such as the Laplacian matrix Lc = Dc−Ac, have the same
eigenvectors as Ac and can be similarly decomposed using the DFT matrix. Importantly,
this degeneracy in the DSP case is lifted when the cyclic graph is extended to more
complex graph topologies, as also illustrated in the overview in Figure 2. This yields
the alternative, derivative-based definition of the GFT, which is derived in the following
subsection.

Derivative-based Graph Fourier Transform In the classical Fourier transform, Fou-
rier modes are complex exponentials e− jωt . These exponentials are trivially eigenfunc-
tions of the partial time-derivative ∂/∂ t [38, 39], as well as the second partial time-
derivative ∂ 2/∂ t2:

∂

∂ t
e− jωt =− jωe− jωt

∂ 2

∂ t2 e− jωt =−ω
2e− jωt ,

with eigenvalues of − jω and −ω2, respectively.

As shown in subsection 2.3, in DSP the directed Laplacian matrix Lc of a cyclic shift
graph is the algebraic representation of the negated forward difference operator −∆ ,
whereas the symmetrised Laplacian matrix Lc,sym is the algebraic representation of
the operator −2∆ 2. Crucially, the eigenvectors vk of Ac, which constitute the discrete
Fourier modes, are also eigenvectors of Lc with eigenvalues λ ′k = (1−λk):

Lcvk = (Dc−Ac)vk = 1 ·vk−λkvk = λ
′
kvk.
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In other words, the discrete Fourier modes are eigenvectors of the negated forward
difference operator, in the same way that continuous Fourier modes are eigenfunctions
of the time-derivative. As a consequence, the eigendecomposition of Lc is given by:

Lc = Q−1
c (1−Λc)Qc =: Q−1

c Λ
′
cQc,

where Λc and Qc are the eigenvalue and the eigenvector matrix of Ac, respectively, as
defined by equation (2).

The Fourier modes can be interpreted as eigenmodes of the derivative, or in the discrete
case as eigenmodes of the forward difference. Leveraging this notion leads to the second
extension of DFT to graphs. Accordingly, the derivative-based GFT for a spatial signal
x ∈ RNc on a graph with adjacency matrix A is defined as follows:

L = D−A = QLΛLQ−1
L

x̃ := Q−1
L x. (5)

In the literature, the symmetrically normalised Laplacian Lnorm is sometimes used in-
stead of the Laplacian [25, 38, 41]. In the case of a graph Ac with linear topology, the
degree matrix Dc is given by the identity matrix, which means that the symmetrically
normalised Laplacian Lc,norm = D−1/2

c LcD−1/2
c of this graph is equivalent to the Lapla-

cian Lc. Consequently, the eigendecomposition of Lc,norm is also given in terms of the
DFT matrix.

Lastly, note that eigenvectors vk of Lc with k > 0 are not the same as the eigenvectors
of the symmetrised Laplacian Lc,sym = Dc−

(
Ac +A⊤c

)
/2: While the eigenvectors vk

are complex-valued for k > 0, the eigenvectors of the Lc,sym are necessarily real-valued
due to the symmetry of Lc,sym. As a consequence, the eigendecomposition of Lc,sym is
not given in terms of the DFT matrix; in other words, the eigendecomposition of the
symmetrised Laplacian of a graph with linear topology does not reduce to the DFT.
However, given the analogy of Lc,sym to the second partial time-derivative in the con-
tinuous case, of which the Fourier modes are also eigenfunctions, it may still be valid
to use the symmetrised Laplacian Lsym of an arbitrary graph structure for the GFT in
lieu of L. This may be especially useful if the measurement of the graph structure is
intrinsically symmetric, while the actual graph structure is not. For example, when as-
sessing the structural connectivity by measuring white matter between brain regions,
the directionality cannot be determined due to limitations in the methodology, and only
the symmetric graph is retrieved.

In both variants, the GFT is a linear spatial transformation that is retrieved by com-
puting the eigendecomposition of an algebraic graph representation. The rows of the
GFT-matrix, which are the eigenvectors of the eigendecomposition, represent the graph
Fourier modes. The computational complexity of this eigendecomposition is small as
long as the number of graph nodes is sufficiently small, which is typically the case for
neurophysiological applications. The GFT itself corresponds to a matrix multiplication
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with matrices of size N×N and N×Nt , thereby scaling linearly with the number of
time samples Nt .

While equations (4) and (5) define the GFT for spatial signals, the GFT can be straight-
forwardly extended to multivariate signals X ∈ RN×Nt :

X̃ = Q−1
A/LX,

where the subscript A/L indicates that the GFT can either be chosen to be filter-based
(A, computed using the adjacency matrix) or derivative-based (L, computed using the
Laplacian matrix). In the matrix multiplication on the right-hand side, each column x∗ j,
corresponding to a spatial signal at time j, is transformed successively. The rows x̃i∗ of
the transformed multivariate signal X̃ are the graph frequency signals, associated with
the graph frequency i and the eigenvalue λi. Note that each graph frequency signal can
also be thought of as a linear combination of the N time signals xi∗.

2.5 Total variation (TV)
A useful statistic of a graph signal x∈RNc is its total variation (TV), which is a measure
of how smooth the signal is across the graph structure A. The TV is based on the local
variation, which in turn is based on the graph derivative of the graph signal. The graph
derivative can be defined either on the node i or on the edge (i, j), leading to two dif-
ferent definitions of the TV, here referred to as the node-based [38] and the edge-based
[34] TV.

The node derivative calculates the difference between the signal and the signal shifted
by the GSO, yielding a derivative at node i:

∇i(x) := [x−Ax]i = xi−∑
j

ai jx j.

The local variation is then given by the magnitude ∥∇i(x)∥1 of the graph derivative.

The edge derivative, on the other hand, weighs the difference between the signal at node
i and the signal at node j by their connectivity, yielding a derivative along the edge (i, j):

∇i j(x) :=
√

ai j(xi− x j).

The local variation is then computed using the p-norm of the derivative vector ∇i∗(x):

∥∇i∗(x)∥p =

(
∑

j
a

p
2
i j |xi− x j|p

) 1
p

, p ∈ N.

In both cases, the TV of a graph signal is computed from the sum of the local variation
across all nodes. Given a graph structure A, the node-based [38] and the edge-based
[34] TV of a graph signal x are then defined as follows:

TV(n)
A (x) := ∑

i
∥∇i(x)∥1 = ∑

i

∣∣∣xi−∑
j

ai jx j

∣∣∣= ∥x−Ax∥1

TV(e)
A (x) :=

1
2 ∑

i
∥∇i∗(x)∥2

2 =
1
2 ∑

i
∑

j
ai j(xi− x j)

2. (6)
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Note that the node-based TV can also be computed from the normalised adjacency
matrix Anorm = A/|λmax|, where λmax is the largest eigenvalue of A, which ensures
numerical stability. While the node-based TV is always either positive or zero, the edge-
based TV can become negative if we allow negative weights ai j < 0 in the adjacency
matrix. Section 3.1 discusses the validity of negative weights and possible implications.

The TV allows to understand the ordering of the graph eigenvectors as frequencies in
terms of their eigenvalue. In the case of the node-based TV with Anorm, the TV for a
normalised eigenvector vk with real eigenvalue λk is given by:

TV(n)
Anorm

(vk) =
∣∣∣1− λk

λmax

∣∣∣.
It can easily be seen that the following holds for two eigenvectors vk and vl of Anorm
with respective real eigenvalues λk and λl :

λk < λl

⇒ TV(n)
Anorm

(vk)> TV(n)
Anorm

(vl).

In other words, the ordering of the eigenvalues from highest to lowest orders the graph
eigenvectors from lowest to highest frequency. Notice that any eigenvector vk of Anorm
is also an eigenvector of A.

A similar relationship between eigenvalue and frequency can be established for the
edge-based TV if we assume the adjacency matrix to be symmetric, i.d., ai j = a ji. To
this end, the TV is firstly expressed in terms of the Laplacian:

TV(e)
A (x) =

1
2 ∑

i, j
ai j(xi− x j)

2

ai j=a ji
= 2

(
1
2 ∑

i, j
ai jx2

i

)
− 1

2 ∑
i, j

ai j2xix j

= x⊤

∑ j a1 j
. . .

∑ j aNc j

x−x⊤Ax = x⊤Lx.

This representation of the TV allows to link the eigenvalues to graph frequencies. For a
normalised eigenvector vk of L with eigenvalue λk, the TV is given by:

TV(e)
A (vk) = v⊤k Lvk = λk∥vk∥2 = λk.

Hence, the frequency of the eigenvector vk of L, which is given in terms of its TV,
is directly linked to its eigenvalue. Importantly, here the eigenvectors of the Laplacian
matrix are linked to the graph frequencies, while in the case of the node-based TV the
ones of the adjacency matrix are linked to the graph frequencies. This explains why
here higher eigenvalues correspond to higher graph frequencies, while in the case of the
node-based TV the relationship is inversed.
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If the Laplacian matrix is symmetric, the eigendecomposition is given by L=QLΛLQ⊤L ,
and the expression can be further rewritten as follows:

TV(e)
A (x) = x⊤Lx = x⊤QLΛLQ⊤L x

= x̃⊤ΛL x̃ = ∑
k

λkx̃2
k .

This identity of the edge-based TV allows to understand how the TV of a graph signal
can be decomposed in terms of its graph frequency components x̃k.

2.6 Graph convolution

The definition of the graph convolution is built on the graph shift operator defined in
subsection 2.2. In the classical case, the convolution for two period time signals s and
r, represented by the time-ordered vectors s = (s0, ...,sN−1)

⊤ and r = (r0, ...,rN−1)
⊤, is

given by the vector

(
(s∗ r)[n]

)⊤
1≤n≤N

=

(
∑

i
riAi

c

)
s.

The following two identities can be directly derived from the eigendecomposition of Ac
in equation (2):

Ai
c = QcΛ

i
c Q−1

c

∑
i

riΛ
i
c = diag(Q−1

c r/
√

N). (7)

Using these two identities, the vector of the convoluted signal s ∗ r can be rewritten as
follows: (

(s∗ r)[n]
)⊤

1≤n≤N
= ∑

i
ri QcΛ

i
cQ−1

c s

= Qc diag
(

Q−1
c r/
√

N
)

Q−1
c s

= Qc
1√
N
(Q−1

c r)◦ (Q−1
c s).

The analogy between the classical shift operator and the GSO can be used to define the
graph convolution on two spatial signals x and y:

x∗y =

(
∑

i
yiAi

)
x. (8)

Using the filter-based GFT, we can use the identity

Ai = QAΛ
i
AQ−1

A , (9)
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which can be trivially derived from the eigendecomposition of A, to rewrite the graph
convolution:

x∗y = ∑
i

yi QAΛ
i
AQ−1

A x

= QA diag

(
∑

i
yiλ

i
0, ...,∑

i
yiλ

i
N−1

)
Q−1

A x.

The crucial difference between the classical convolution and the graph convolution is
that the identity (7) does not have a comparable equivalent in GSP.

We can also implicitly define the graph convolution for the case of the derivative-based
GFT by analogy to the classical convolution:

x∗y = QL

(
∑

i
yiΛ

i
L

)
Q−1

L x =

(
∑

i
yiLi

)
x. (10)

This definition of the graph convolution has been commonly used in the literature [42–
45]. Note, however, that this definition is implicitly based on the inadequate assumption
that the Laplacian matrix is a GSO, which can be seen by comparing the last equation
(10) to the GSO-based convolution in equation (8).

2.7 Graph signal filtering

In classical signal processing, filters can be described both by their impulse response
in the time domain as well as by their frequency response in the Fourier frequency do-
main; the two descriptions are linked by the DFT. Graph filters can be similarly defined
by their impulse and by their frequency response; here the descriptions are linked by
the GFT [46]. The former, impulse response description was previously encountered
in subsection 2.4 and is closely related to the concept of convolution as introduced in
the previous subsection 2.6. The frequency response description is more convenient to
define graph spectral band-pass filters, which is essential for tasks such as graph denois-
ing. For example, a low-pass filter can be used to reduce the total variation of the spatial
signal. Alternatively, graph impulse response filters can also be used to minimise the
node-based TV together with a similarity term, as shown in Chen et al. [47]. However,
this approach is less intuitive, as it requires to explicitly compute the filter parameters.

In the time domain, a filter H can be built by accessing previous signal values through
shifting the signal x and weighing each of these values by pi, as previously shown in
equation (3):

Hx =

(
N−1

∑
i=0

piAi
c

)
x = h(Ac)x = x̃, (11)

where x̃ is the filtered graph signal and h is the polynomial filter function.

Using the identity (9) with A = Ac,

Ai
c = QcΛ

i
cQ−1

c ,
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we can rewrite equation (11):

Hx = Qc

(
N−1

∑
i=0

piΛ
i
c

)
Q−1

c x = Qc h(Λc)Q−1
c x

=: Qc diag(h0, ...,hN−1)Q−1
c x.

In other words, to define the filter H we can either use the N parameters pi, which
define the filter by its weights in the time domain, or equivalenty the parameters hi,
which define it by its weights in the Fourier domain.

In analogy to this classical case, we can define a graph filter HA/L in the spatial domain
for the two definitions of the GFT as follows:

HAx =

(
N−1

∑
i=0

piAi

)
x

HLx =

(
N−1

∑
i=0

piLi

)
x.

Note that the Laplacian-based GFT filter is not built on the graph convolution, unlike
the adjacency matrix-based GFT filter.

As in the classical case, the same filters can be described in the graph spectral domain
using the eigenvalue matrix ΛA/L:

HA/Lx = QA/L h(ΛA/L)Q−1
A/Lx

=: QA/L diag
(

h(A/L)
0 , ...,h(A/L)

N−1

)
Q−1

A/Lx.

The parameters pi or hi can either be designed or learned using machine learning-
approaches. Sometimes, the spatial domain description of the filter is used to avoid
computing the eigendecomposition of the adjacency matrix or the Laplacian [42]. To
further limit computations or the number of parameters, only the first k parameters pi
are used, such that pi = 0 for i >= k.

3 Graph Signal Processing in Biomedical Imaging

Biomedical imaging is one of many applications where multivariate signals are ac-
quired. Brain imaging techniques, such as fMRI, EEG, or MEG, record multiple signals
simultaneously in time at different spatial locations. In fMRI, the signal locations are
called voxels, whereas in MEG and EEG they are called channels. An EEG measure-
ment setup with Nc channels which record the brain over a time period T at a sampling
rate f yields a data matrix X ∈ RNc×Nt , where Nt = ⌊ f ·T⌋ is the number of time sam-
ples. The following three sections cover graphs and graph Fourier modes in biomedical
imaging more generally, before discussing applications of GSP in this field.
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3.1 Graph retrieval

The GFT of the multivariate signals relies on the graph, or spatial structure, of the data.
The retrieval of the graph from neuroimaging data is not unique, but can be based on the
structural, or anatomical, connectivity, the functional connectivity [48], or the geometric
location of the sensors [27].

Firstly, the graph can be based on the functional connectivity between the signals.
This method is purely data-driven and can therefore be used on all data sets. Common
choices to build the graph include computing pairwise Pearson correlations or covari-
ances, but nonlinear measures such as mutual information, the phase lage index, or the
phase locking value can be used as well [49]. As shown in subsection 4.3, there is a
link between GFT using functionally retrieved graphs and PCA. The experimental sec-
tion of this chapter uses the Pearson correlation to construct the graph (see subsection
5.2). Secondly, a graph can be constructed using the structural connectivity between
nodes, which can be determined with secondary measurements. For neurophysiological
signals, for example, diffusion tensor imaging can be employed [50]. Lastly, the con-
nectivity between the nodes can be determined by their geometric properties, such as the
pairwise distances between them. The distances can then be mapped to the connectivity
strengths. The method only requires knowledge about the data acquisition system.

Often, these different graph retrieval methods can lead to similar graphs, in part be-
cause the methods are aiming to estimate the same connectivity structure underlying
the neural substrate. As an example of this, the structural and the functional connec-
tivity are generally related to each other [50]. In an attempt to make this relation more
explicit, Li et al. learned the mapping between structural and functional connectivity,
giving insight into how functional connectivity arises from structural connectivity [51].
On a more cautious note, Wang et al. give examples why the structural connectivity is
not sufficient to explain the dynamics of neural activity [52], and thus the functional
connectivity.

Despite some similarities, Horwitz argued that there is no single underlying connectiv-
ity structure, but that connectivity should be thought of as “forming a class of concepts
with multiple members” [53]. Generally, the choice of the graph retrieval method can
alter the interpretation of the graph [54]. For example, Mortaheb et al. used a geomet-
ric graph to calculate the edge-based total variation, which allowed them to interpret
the results as effects of local communication [31]. Nevertheless, the ambiguity of the
retrieved graph remains a challenge for GSP. To illustrate this, Ménoret et al. observed
vastly different results when testing seven different graphs for their GSP-based method-
ology [27]. An interesting solution to reduce this ambiguity is the construction of a
multilayer graph, as was done by Cattai et al. with EEG data [55].

One important difference between the graph retrieval methods lies in whether they allow
negative connections between nodes or not. For example, some functional connectivity
measures, such as the pairwise Pearson correlation, can yield negative connections. On
the other hand, structural connectivity measures looking at physical structures in the
brain, such as white matter projections, typically cannot discern whether a connection
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is positive or negative [56]. The implications of using negative weights in the adjacency
matrix are further explored in subsection 3.2.

3.2 Negative graph weights

Some graph retrieval methods, such as the pairwise Pearson correlation, can lead to
negative weights in the adjacency matrix. While negative weights may be less intuitive,
they can extend the applicability of graphs [57]. In neuroimaging, for example, negative
weights may be used to model inhibitory pathways in the brain [58]. This section will
discuss some of the mathematical implications of negative weights for GSP.

A first consequence of using a graph with negative weights is that the Laplacian matrix
is not necessarily diagonally dominant, which in turn means that the Laplacian can have
negative eigenvalues. A downside of this is that the constant, or DC, graph Fourier mode
is no longer the lowest Fourier mode, i.d., the mode with the lowest frequency. An ex-
ample of this can be seen in Figure 3, where the graph Fourier modes for two graphs are
given, namely the geometric graph with only positive weights and the Pearson correla-
tion graph with both positive and negative weights. The DC graph Fourier mode is the
lowest mode for the geometric graph, which is not the case for the Pearson correlation
graph. Secondly, allowing negative weights means that the edge-based TV, as defined
in equation (6), can become negative. This is in contrast with the notion of TV as a
positive quantity in the field of image processing [59]. A third consequence of negative
weights is that they can cause negative entries in the degree matrix D, which means
that the square root of the inverse of D, D−1/2, is not real-valued. As a result of this,
the symmetric normalised Laplacian Lnorm = D−1/2LD−1/2, which may be required for
certain applications, can not be computed.

3.3 Graph Fourier modes

In spectral graph theory, the graph is decomposed into graph Fourier modes. The GFT
transforms a spatial signal x ∈ RNc by projecting it onto the Nc graph Fourier modes,
which can be thought of as eigenmodes of the graph. This section intends to shed more
light on the meaning of these graph Fourier modes.

Figure 3 shows the graph Fourier modes for a real EEG data set. The dataset was
recorded on 20 healthy participants and 20 Alzheimer’s patients. The recordings were
acquired using 23 bipolar channels at a sampling rate of 2048 Hz. For all participants,
three 12 s-long segments were selected from a larger recording. For one participant, one
segment is missing. A more detailed description of the data set can be found in Black-
burn et al. [61]. The top row (A-E) in the figure shows graph Fourier modes computed
from the geometric distance between the EEG sensors. The bottom row (F-J) shows
modes computed from the functional connectivity, specifically the pairwise Pearson cor-
relation between the sensors, averaged across all participants and segments. Here, the
relation between the graph Fourier modes and their corresponding frequency becomes
clearer: Lower frequency modes are “waves” with a global pattern spreading across the
whole brain, whereas higher modes are highly localised and fast-varying waves. This
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Fig. 3: Lowest and highest graph Fourier modes for a geometric distance-based graph
and a functional connectivity-based graph, computed from a real EEG data set and visu-
alised using the Nilearn package in Python [60]. (A-C) The lowest graph Fourier modes
of the geometric graph capture the fundamental symmetries and comprise the DC mode,
the lateral symmetry mode and the coronal symmetry mode. (D-C) The highest graph
Fourier modes are more localised. (F-H) The lowest graph Fourier modes of a functional
connectivity Pearson correlation graph, which is computed from a real-world EEG data
set. The graph contains negative weights, such that the DC mode is not necessarily the
lowest mode. Modes 1 and 2 vaguely reflect the lateral symmetry mode 2 and the coro-
nal symmetry mode 3 of the geometric distance-based graph. (I-J) The highest graph
Fourier modes of the Pearson correlation graph are localised and still exhibit a lateral
symmetry

general description applies to the two graphs, even though they are retrieved with fun-
damentally different methods. One major difference between the two graphs is that the
DC mode, i.d., the mode with constant entries, is the lowest frequency mode for the ge-
ometric distance graph, but not for the Pearson correlation graph. This is a consequence
of the negative edge weights in the correlation-based graph. These induce eigenmodes
with negative eigenvalues, and therefore have a frequency below that of the DC mode
with eigenvalue zero.

The projections of a multivariate signal onto these graph Fourier modes, namely the
graph frequency signals, may yield insight into the acquired data beyond the raw signal.
For example, the projection of the multivariate signal onto the DC mode corresponds
to the mean of the signal across the channels. The analysis of the graph frequency
signals in terms of their performance on a classification task may shed more light on
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the meaning of graph frequency and is the main topic in the experimental part of this
book chapter (see sections 5-7).

One major difference between DFT Fourier modes and GFT graph Fourier modes is the
magnitude of the eigenvalues associated with these modes, which can take on values
other than one in the case of GFT modes. Therefore, when using the GSO as a time
evolution operator, the eigenmode coefficients may either vanish or explode. This is in
contrast to the shift operator in Euclidean space, which ensures that eigenmode coef-
ficients stay constant in time. One example from physics are electromagnetic waves,
which can travel distances of billions of light years due to this property. Previously,
an energy-preserving GSO was introduced by Gavili et al. [41]; however, this GSO
is constructed by simply replacing the eigenvalues of the decomposed GSO with one.
While this changes the original GSO, it leaves the GFT and thereby the eigenmodes
untouched. The new GSO preserves the energy of the eigenmodes, but it may no longer
be an accurate representation of the graph structure.

3.4 Graph-based dimensionality reduction

The GFT projects a spatial or a multivariate signal onto graph Fourier modes, which
were the topic of the previous section 3.3. These projections are called the graph fre-
quency signals. Unlike the unaltered time signals, the graph frequency signals can be
ordered. This ordering allows to reduce the dimensionality of the signal by selecting
specific graph frequencies, such as the k lowest graph frequencies, as for example
demonstrated by Rui et al. on an MEG dataset [62]. The same dimensionality reduction
method can also be used for graph-based image compression, as shown by Fracastoro
et al. [63]. The experimental section of this book chapter will further examine the role
that the frequency ordering plays for the graph frequency signals.

Similar as in classical signal processing, graph bandlimited signals correspond to sub-
sampling in the spatial domain [64]. However, unlike in the classical case, loss-free
graph sampling for a given band requires sophisticated algorithms. Examples are the
greedy algorithm by Anis et al. [64] and the random sampling scheme by Puy et al.
[65]. Both the projection-based and the graph sampling-based dimensionality reduction
were evaluated by Ménoret et al. on an fMRI classification task [27]. Their results in-
dicate that improvements over graph-free dimensionality reduction methods depend on
the graph used. We show in subsection 4.3 that GSP-based dimensionality reduction is
equivalent to principal component analysis (PCA) for a certain class of graphs.

3.5 Graph filtering

Graph filtering, formally derived in subsection 2.7, is a transformation that can be used
for tasks such as graph denoising of a multivariate signal [47]. Graph denoising can be
based on the graph frequency response filter using either the adjacency or the Laplacian
matrix. In analogy to band-pass Fourier filtering [66], a low-pass graph filter can be ap-
plied to the input signal for graph denoising. Intuitively, structurally connected sensors
measure similar values, therefore, variations between highly connected sensors should
indicate noise. More formally, it has been shown that graph filters minimise the TV [34].
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Conversely, variations between connected sensors may carry important information as
well, in which case a high-pass graph filter would be more suitable. The graph-filtered
signal can then be used for further signal processing tasks. Huang et al. use both a
graph low-pass and a graph high-pass filter on fMRI signals, and find that the high-pass
filter is more useful to correlate signal norms with switch cost in the Navon switch-
ing task. Graph band-pass filtering is also the basis for the structural-decoupling index
introduced by Preti et al., which compares the norm of graph high-pass and low-pass
filtered graph signals [67].

Graph impulse response filters can also be used for graph denoising, albeit less inu-
itively so. Chen et al. applied graph denoising on temperature sensor measurements
and for opinion combining. A more sophisticated approach is to adaptively learn the
graph filter, which has been used to denoise impulsive EEG signals [68].

Use in neural networks In machine learning applications, graph filtering allows to
extend convolutional neural networks to data on graphs. Introduced by Defferrard et al.
[42], graph neural networks have found widespread applications [69]. Here, a Laplacian-
based graph impulse response filter as opposed to a graph frequency response filter is
commonly used, which has the advantage that it can be localised on the graph. To de-
crease the range of suitable filter values, the polynomial of the filter is commonly re-
placed by a Chebyshev polynomial. The polynomial impulse filter can also be replaced
by an auto-regressive moving average filter, as shown by Bianchi et al. [70]. In EEG,
graph neural networks have been employed to detect emotions [71, 72], to classify
error-related potentials [73], or to detect seizures [74].

3.6 Analysis of total variation (TV)

The TV, as introduced in subsection 2.5, is a statistic which measures how much a signal
varies on the graph structure. While the previously examined spatial low-pass filter aims
to reduce the TV of a signal on a graph, the TV in itself serves as a useful statistic
of the graph signal or, when summed over time, the whole multivariate signal. For
example, Mortaheb et al. found a correlation between the level of consciousness and the
TV [31]. Specifically, the authors analysed alpha-band signals in EEGs on a geometric
graph derived from the location of the sensors, giving insight into how disorders of
consciousness affect short-range and long-range communication in the brain. The TV
can also be used to extract features for classification tasks, such as motor imagery tasks
from EEG [75].

3.7 Graph learning with Graph Signal Processing (GSP)

Similar to graph denoising, GSP-based graph learning exploits the link between the
graph structure and the spatial variation of a signal, i.d., the notion that a signal does not
vary much on the graph structure. However, instead of changing the signal to reduce the
TV, graph learning inversely learns the graph structure to minimise the TV [76]. In other
words, the TV is used as an optimisable objective function with the graph structure as its
argument. Other terms can be added to this objective function to add further constraints
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on the graph. For example, one can further require the graph to have positive weights
and to be sparse, i.d., to have few non-zero weights. While this graph-learning method
has connections to learning Markov random fields, GSP adds a new perspective in terms
of signals by interpreting the graph learning as minimising the TV [77]. Kalofolias
has introduced an algorithm in 2016 to solve this graph learning problem [78], which
has since been picked up to retrieve graphs from neurophysiological signals [27, 79,
80]. Section 4.1 explores the link between this TV-based graph retrieval and functional
connectivity-based graph retrieval.

4 Links in Graph Signal Processing (GSP)

The plethora of graph retrieval methods and graph representations results in a deep am-
biguity in GSP. To begin with, there are several ways to retrieve the graph structure
for the data (see subsection 3.1). For some of the retrieved raw graphs, further prepro-
cessing steps may be possible or required depending on the application, such as setting
negative weights to zero, taking the absolute value of the weights, or normalising the
graph (see also subsection 3.2). Lastly, several graph representations can be computed
from the preprocessed graphs, such as the adjacency matrix, the Laplacian matrix or
the normalised Laplacian matrix (subsection 2.4). This multitude of graphs and rep-
resentations thereof poses the question of whether there are similarities between them
that could minimise the ambiguity in GSP. To this end, this subsection investigates the
conditions for which some of the graph retrieval methods are equivalent, and explores
the similarities between different graph representations.

4.1 Links between graph retrieval methods

This section specifically looks at the links between functional connectivity-based graphs
and total variation-optimised graphs.

Kalofolias already showed such a link for a commonly used graph Aexp ∈RN×N , which
is constructed from the rows xi∗ of the data matrix X as follows [78]:

a(exp)
i j = exp

(
−
∥xi∗−x j∗∥2

2
σ

)
.

Given the following regularisation term,

f (log)(A) = σ
2
∑

i
∑

j
ai j (log(ai j)−1) ,

this functional connectivity-based connectivity matrix minimises the edge-based total
variation:

argmin
A∈A

TV(e)
A (X)+ f (log)(A) = Aexp,

where A denotes the set of real-valued N×N adjacency matrices.
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In the following, suppose we are given a normalised multivariate signal Xnorm, where
each row xi∗, corresponding to the time signal at sensor i, is standardised to mean zero
and standard deviation one. We show that for such a signal a similar link between a total
variation-optimised graph and a functional connectivity-based graph, whose entries in
the adjacency matrix are the pairwise Pearson correlations, can be established. Note that
due to the normalisation of the time signals, this Pearson correlation matrix is equivalent
to the covariance matrix.

We firstly introduce the regularisation term

f (c)(A) =
1
2
∥JN−A∥2

F =
1
2 ∑

i
∑

j
(1−ai j)

2, (12)

where JN is an all-ones matrix of size N×N, and ∥ · ∥F denotes the Frobenius norm.
Specifically, this regularisation term aims to shift the entries ai j of A closer to 1.

Then, the solution to the optimisation problem

argmin
A∈A

TV(e)
A (Xnorm)+ f (c)(A) (13)

is the adjacency matrix given by the correlation matrix Acorr, where the entries a(c)i j are
calculated as the Pearson correlation between the normalised time signals xi∗ and x j∗ of
the sensors i and j, respectively. This can be shown by taking the derivative with respect
to ai j:

∂

∂ai j
TV(e)

A (Xnorm)+ f (c)(A)
∣∣∣
A=Amax

=
∂

∂ai j

Nt

∑
k=1

∑
i, j

(
ai jx2

ik−ai jxikx jk +
1
2
(1−ai j)

2
)∣∣∣

ai j=amax
i j

=
Nt

∑
k=1

(
x2

ik− xikx jk +(1−amax
i j )(−1)

)
=

Nt

∑
k=1

(
1− xikx jk−1+amax

i j
)
= 0

⇒ amax
i j =

1
Nt

Nt

∑
k=1

xikx jk = a(c)i j .

In other words, the correlation matrix Acorr minimises the total edge-based variation of
a normalised data matrix X given the regularisation term defined in (12). Therefore, it
can be equally retrieved by learning the solution to the optimisation problem in (13).
Note that the requirement that the signals have to be normalised is naturally given for
many neurophysiological signals, such as EEG signals. In our experiment, beginning in
section 5, we normalise the data and use the Pearson correlation matrix as the graph for
the data.



22 Stephan Goerttler, Min Wu, Fei He

4.2 Links between graph representations

There are arguments for both using the adjacency or the Laplacian matrix as the GSO in
GSP, and both are frequently utilised in the literature. In a direct comparison, Huang et
al. have observed no noticeable difference between using the adjacency or the Laplacian
matrix as the GSO [28]. This observation poses the question of the relation between the
use of the adjacency and the Laplacian matrix in GSP. Here, we demonstrate that for
large graphs with normally distributed adjacency matrix weights, the two GSOs have
similar eigenvectors. This in turn would mean that their respective GFTs are similar.

We here assume that the weights of the adjacency matrix follow a normal distribution
with mean µ and standard deviation σ . Accordingly, the entries of the diagonal matrix
are given by:

di = ∑
j

ai j = µ(N−1)+ εi,

where εi ∼ N (0,σ2
diag), and σdiag = σ

√
N−1. Note that the standard deviation σdiag

of elements di on the diagonal is by a factor of
√

N−1 larger than that of the non-
diagonal elements ai j. However, for sufficiently large N, the deviation is significantly
smaller than the sum of the expected magnitudes of the non-diagonal elements in that
row:

σdiag = σ
√

N−1≪σ

√
2
π
(N−1)

≤σ

√
2
π
(N−1)e−µ2/2σ2

+µ(N−1)
(

1−2Φ

(
−µ

σ

))
=∑

j ̸=i
E [|ai j|] .

Here, Φ denotes the normal cumulative distribution function. Consequently, the Lapla-
cian L can be approximated by a matrix L′, which is defined as follows:

L = D−A
= µ(N−1)1+diag(ε1, ...,εN)−A
≈ µ(N−1)1−A =: L′.

Crucially, as eigenvectors uk of A are also eigenvectors of L′,

L′uk = µ(N−1)uk−Auk = λ
′
kuk,

the GFT based on the adjacency matrix and the one based on the Laplacian matrix will
be similar.

The normality assumption can be a good approximation for highly interconnected net-
works with negative weights. The Pearson correlation graphs retrieved from the simu-
lated data in the experimental section of this book chapter fulfils both conditions. For
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disconnected networks, the assumption is not met as weights between disconnected
parts of the graph are zero and thereby not randomly sampled. Considering brain net-
works, certain pathological conditions, such as split-brain, can cause the brain graph to
be disconnected. On the other hand, graphs with only positive graph weights can equally
violate the normality assumption if the mean is not much larger than the standard de-
viation, as this gives rise to a skewed distribution. Many graph retrieval methods yield
graphs with only positive weights. The topic of negative graph weights was explored in
subsection 3.2.

4.3 Link to principal component analysis (PCA)

PCA projects multivariate samples onto a set of orthogonal components, which are the
eigenvectors of the covariance matrix of the data set. Crucially, if the covariance ma-
trix is used for the GFT, then GFT and PCA are mathematically equivalent. Note that
for normalised signals with standard deviation one, which is common for some neu-
rophysiological signals such as EEG signals, the correlation and the covariance matrix
are the same. Note also that the diagonal entries of the signal correlation matrix are
one and will not affect the eigenvectors. In other words, using the correlation matrix of
normalised signals for GFT, either with or without diagonal elements, is equivalent to
PCA.

5 Methodology

The aim of the experimental section is to expand on previous work by Rui et al. [62]
and Ménoret et al. [27] and investigate dimensionality reduction via GFT projection
for classification tasks. The focus will be on understanding the role of graph frequency
ordering. To increase the precision needed to compare the graph frequencies, we de-
veloped an algorithm to simulate multivariate signals with spatio-temporal features.
After transforming the temporal signals into graph frequency signals, our classification
model extracts power spectral densities as features from the graph frequency signals
and analyses these features using an SVM classifier. We hypothesise that lower graph
frequencies amplify spectral features present in the time signals, to the extent that the
lower graph frequency signals outperform all other univariate signals tested. On the
other hand, higher graph frequency signals, which are based less on the graph structure,
should perform equal to or slightly higher than baseline.

5.1 Simulated data set

We developed Algorithm 1 to generate multivariate signal samples Xsim ∈ RNc×Nt with
Nc channels and Nt time samples. The generated samples simulate neuroimaging mea-
surements, such as EEG, with which they share two crucial characteristics: Firstly, the
samples have an underlying graph structure, such that each pair of signals has a specific
connectivity associated to it. Secondly, the temporal signals have a specific spectral
profile.
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Algorithm 1 Neurophysiological signal simulation
Input Nt , As, h, α , β , γ

Output X
1: εi j, ε̃i j ∼N (0,12), i = 1, ...,Nc, j = 1, ...,Nt
2: ε̂εε i∗←

(
F−1 ◦h◦F

)
(ε̃εε i∗), i = 1, ...,Nc

3: x∗1← β ε̂εε∗1
4: for t← 2,Nt do
5: x̂∗t−1← x∗t−1− x̄∗t−1 + γεεε∗t
6: x∗t ← αAsx̂∗t−1 +β ε̂εε∗t
7: end for

The algorithm takes as input the number of generated time samples Nt , the weighted
adjacency matrix As ∈ RNc×Nc , the filter function h, as well as parameters α , β and γ .
While As controls the connectivity, or spatial structure, the filter function h controls the
spectral profile. Specifically, using two filter functions h1 and h2 allows to simulate two
separate conditions, whereby the similarity between the two filter functions controls the
similarity between the conditions. This may simulate conditions such as Alzheimer’s
disease or healthy control in EEG data, where each condition has a specific spectral
profile [81]. Generally, the more similar the conditions are, the harder it becomes to
classify the dataset. Parameter α controls the strength of the correlation structure, while
parameter β controls the strength of the spectral structure. Parameter γ controls the self-
amplification of the signals during the simulation.

In each time step of Algorithm 1, firstly the graph signal of the previous time step x∗t−1
is centred around zero and Gaussian noise γεεε∗t is added to this signal (line 5). Secondly,
the adjacency matrix As is used as a GSO to translate the graph signal in time, which
enforces the structural connectivity As in the data (line 6). Thirdly, the translated signal
is scaled by α and normalised coloured noise ε̂εε∗t is added scaled with β , whose spectral
density profile is controlled by the filter h (line 6). Finally, the simulated multivariate
signal is labelled with its condition.

To simulate our data, we used three different filter functions h2 for condition 2 (orange
lines in Figure 4(C)), resulting in data sets which are either easy, medium or difficult to
classify. The connectivity structure matrices As ∈RNc×Nc with Nc = 25 were generated
by drawing weights as

i j = as
ji ∼ U[−0.1,0.4] from a uniform distribution for i > j, and

setting as
ii = 0.4. We set the simulation parameters to α = 0.5, β = 1, and γ = 1. For

each simulated participant, we generated Nc = 25 time-series signals with Nt = 2048
time samples each.

Figure 4 shows the simulated signals (A) along with their spatial (B) and spectral (D)
structure. The spatial structure in (B) is shown as the density of channel pairs at a
specific correlation value, together with the spatial structure of real EEG recordings
(orange, for a description of the dataset see subsection 3.3). The median of the simu-
lated data was matched to that of the EEG recording using the parameters in the algo-
rithm. The spread of the correlation values in EEG recordings is higher, which may be
partly due to volume conduction effects not considered in this simulation [82]. How-
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Fig. 4: Simulated neurophysiological signals. (A) Time signals for four selected chan-
nels across the first 100 samples. Channels #2, #3 and #4 are positively, weakly and
negatively correlated to channel #1, respectively. (B) Density of correlations of channel
pairs in blue, exhibiting the spatial connectivity structure. In the simulation, this struc-
ture is controlled by the matrix As, but it is also affected by the simulation parameters.
Realistic EEG recordings (light orange) exhibit a wider spread of correlations, which is
in part due to volume conduction effects not included in the simulation. The median of
the simulation (vertical line) was matched to that of the EEG recording. (C,D) Demon-
stration of power spectral density control and adjustment of classification difficulty. (C)
The Fourier filter function h used to colour the noise in Algorithm 1, assuming a sam-
pling frequency of 256 Hz. For each data set, two conditions are simulated. Condition
2 can be varied to make it easy (solid), medium (dashed), or difficult (dotted) to dis-
tinguish from condition 1. The difficulty depends on the similarity between the two
conditions. (D) Welch power spectral density of simulated signals averaged across all
channels for two easily distinguishable conditions. Figures (C) and (D) clearly show
that the shape of the power spectral density profile of the simulated signals can be con-
trolled. Parameter α in Algorithm 1 can be used to reduce the power density at lower
frequencies

ever, these artefacts can be principally reduced by transforming the EEG signals from
the sensor-space to the source-space using sophisticated source reconstruction meth-
ods [83], which also allows to recover the true underlying connectivity structure more
accurately [84, 85]. The spectral structure (D) of the simulated signals is enforced by
the spectral density profile of the coloured noise (C), demonstrating that the spectral
structure can be controlled.

5.2 Classification model

The goal of our classification model is to GFT-transform the multivariate signal into
graph frequency signals and subsequently classify the samples into the two conditions,
using only one graph frequency signal at a time. These graph frequency signals may
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capture spectral features present in multiple time signals, or even spatio-temporal fea-
tures not present in isolated one-dimensional time signals. The structure of our graph
frequency analysis is illustrated in Figure 5. The approach allows us to determine the
classification performance for each graph frequency, which we used to assess the ex-
pressiveness of the spectral structures in this graph frequency signal.

train samples {Xi} connectivity
matrix A /
Laplacian L

average
Pearson
corr.

GFT matrix

eigen-
decom-
position

input sample Xi

GFT•Xi
GFT signal

graph frequency
selection

1×20Welch
PSD

output 1SVM

1×20Welch
PSD

output 2SVM

1×20Welch
PSD

output 25SVM

Fig. 5: Illustration of the graph frequency analysis. For each cross-validation iteration,
all simulated samples from the training set are used to construct either the connectivity
matrix A or the Laplacian matrix L, from which the GFT matrix is computed as the
eigendecomposition (see subsection 2.4). Using the GFT matrix, the input sample Xi is
transformed to its GFT signal X̃i. The signal is further split into the 25 graph frequency
signals. Lastly, a support vector machine classifier is trained on the 20 time spectral
features extracted from each graph frequency signal using Welch’s power spectral den-
sity method. The performance of each graph frequency can then be used to assess the
quality of the spectral features in the graph frequency signal

The first step of the analysis consists of retrieving the graph structure from the training
samples, for which we used the functional connectivity. Note that we need to use the
same graph for all samples to keep the graph Fourier modes constant. Specifically, we
computed the correlation matrix for each sample in the training set and subsequently
averaged all matrices, yielding a common weighted adjacency matrix. Secondly, we
computed the GFT-matrix and carried out the GFT, yielding Nc = 25 graph frequency
signals. We used the weighted adjacency and the Laplacian matrix for the GFT in two
separate experiments. Thirdly, we extracted spectral features from those signals for each
sample. To this end, we computed the Welch power spectral density with a window of
32 time samples for each transformed signal and selected the first N f = 20 power spec-
tral densities as our features. Assuming a sampling frequency of 256 Hz, the extracted
spectral densities cover frequencies in the range of 0-76 Hz at a resolution of 4 Hz.
Lastly, we trained an SVM classifier separately for each graph frequency to classify
the labelled samples, using only the 20 features calculated from each graph frequency
signal. Specifically, we used a common SVM configuration consisting of a non-linear



Graph signal processing for neurophysiological signal analysis 27

radial basis function kernel with kernel coefficient γ = 1/(N f Var(X)), where X is the
feature vector, and a regularisation strength of C = 1. Note that we did not optimise
these hyperparameters for the following two reasons: Firstly, our study was focused
on model comparison rather than performance optimisation. Secondly, the feature ex-
traction in our model is fixed, meaning that hyperparameter configuration biases are
unlikely. The baseline classification models, to be introduced in subsection 5.4, follow
the same analysis steps and differ from this main model only in that their graph structure
is modified.

5.3 Testing

Although our method allows to arbitrarily generate data, this process is still time-
consuming: On the one hand, each time sample in a simulated participant is generated
from the previous sample, restricting the use of vectorised computations. On the other
hand, large numbers of samples on the order of tens of thousands are required to achieve
the precision needed to compare individual graph frequencies. We therefore introduce
a modified, perpetual version of cross-validation, as illustrated in Figure 6, which to
the best of our knowledge has not been used before. The main goal is to successively
generate unlimited pairs of training and test sets, with the constraint that each generated
sample is only used once for testing. Initially, Ns = 100 samples are generated, divided
evenly in condition 1 and condition 2. This data set is split into k = 10 folds. Nine of
these are used for training, resulting in 90 training samples, while the remaining 10
samples are used for testing. For the subsequent iteration, data is generated to form a
new fold with Ns/k = 10 samples, which is added to the training set, whereas the test-
ing fold is shifted by one fold as illustrated in Figure 6. Overwriting the discarded fold
with the new fold ensures that only Ns = 100 samples have to be stored in memory, or
Ns +Ns(1−1/k) = 190 samples if the initially generated samples are reused during the
last iterations. The final accuracy scores are averaged across all samples in the testing
set and across all iterations.

The sample size of the training set is chosen to mimic the number of recorded samples
in realistic neuroimaging data sets, such as the sparse data set mentioned in subsection
3.3. For each simulated graph structure, we ran 90 iterations, excluding the initial con-
figuration, yielding 1000 generated samples, which is equal to the number of testing
samples. We simulated 40 graph structures for each difficulty level, resulting in overall
120000 generated samples, each of which is a data matrix of size 25× 2048. While
matching the training size to real-life experiments ensures that the performance values
of the simulated experiment are similar to those of the experiment, repeating these sim-
ulations arbitrarily often allows to increase the precision of the retrieved performance
to the required level.

5.4 Baseline models

The principal goal of the baseline framework is to assess the gain of using GSP in our
data classification procedure. Crucially, such a framework must be able to pinpoint the
performance gain to the graph structure in the data, and not incidental gains due to other
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Fig. 6: Illustration of the perpetual cross-validation used during the analysis. The whole
data set is split into k = 10 folds. One fold is assigned to be the testing set, while the
remaining k−1 folds comprise the training set. For the subsequent iteration, a fold with
newly generated data is added to the training set, while the testing fold is shifted by one
fold

aspects of the methodology. To illustrate this point, we firstly discuss the baseline model
in Huang et al. [28]: Here, surrogate signals are constructed for the baseline model by
GFT-transforming the signals, then randomly flipping half of the signs of the Fourier
components, before finally performing the inverse GFT. Their model is based on graph
band-pass filtering the signals, however, the same operation was not performed on the
surrogate signals. In other words, not only the graph, but also operations carried out
on the signals differ between model and baseline. As a second illustration, Menorét et
al. used graph-free models such as PCA as their baseline model [27], however, such
baselines principally differ from the tested model in more ways than just the graph
structure. In contrast, here we compose a set of three baseline models which are aimed
at solely altering the graph structure, while preserving the processing steps used in the
model.

The first baseline model is the permuted nodes GSP model, which uses the graph un-
derlying the data, but randomly permutes the nodes of this graph. In this way, the graph
Fourier modes have the same weights as the actual model, but at different locations.
Therefore, the model distorts the graph structure, while retaining important character-
istics of the modes such as the sparsity or diversity. Figure 7 illustrates the effect of
this permutation on the modes in relation to the graph structure. While the top row
(A-E) shows the lowest and highest modes on the graph, the bottom row (F-J) shows
the modes for the permuted graph for the same graph frequencies. The graph Fourier
modes clearly characterise the graph structure at lower graph frequencies for the unal-
tered graph. However, any such relation between the graph and the modes is distorted
for the permuted graph. We expect this baseline model to perform equal to or worse
than our classification model across all graph frequencies, given that the signal trans-
formation in this model is not based on the spatial structure. Out of the three baseline
models, this model is closest to the original classification model.

The second, related baseline model is the random graph GSP model, which uses GSP
with a randomly generated graph. Specifically, we generated an undirected graph with-
out self-loops and normally distributed weights wi j = w ji ∼N (1,12), such that roughly
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Fig. 7: Retrieved functional connectivity graph of a typical simulated training dataset,
visualised as a geometric graph in two dimensions. The geometric positions were de-
termined with the Fruchterman-Reingold force-directed algorithm using the NetworkX
package in Python [86]. Node colourings represent the graph Fourier modes computed
from the graph Laplacian. The top row (A-E) shows the three lowest (modes 1-3) and
highest (modes 24 and 25) graph Fourier modes for this graph. While the low-frequency
modes clearly exhibit a wave-like pattern covering the whole graph, a similar pattern
is not visible for the higher modes. The bottom row (F-J) shows the same modes for
a permuted graph, which is used in the permuted nodes baseline model. The permuta-
tion distorts any low-frequency ordering on the graph, while not changing the sparsity
of the modes. Mode 1 (A,F) corresponds to the DC mode and is not affected by the
permutation

84 % of the weights are positive. While this model transforms the data using GFT, these
transformations are not based on the actual graph structure. Similarly to the first base-
line model, we do not expect this model to outperform the original model for any of the
graph frequencies due to the random nature of the transformation.

The third baseline model is the single channel model, which does not transform the
data and is equivalent to conventional signal processing. It can also be viewed as GSP
with the identity transform, given algebraically by the identity matrix 1. Following this
notion, the “graph frequency signals” are given by the single channels and have no nat-
ural ordering. This trivially means that the mean performance is the same across all
channels. Note also that the “graph Fourier modes” are vectors which are 1 at the chan-
nel index, and 0 elsewhere, which means that these modes are maximally sparse. This
model is the only model that excludes the graph structure, making it an indispensable
baseline model.
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6 Results

Figure 8 illustrates the results of our analysis of the artificially generated data. Specifi-
cally, it shows the classification accuracy in dependence on the graph frequency of the
transformed signal for the three simulated difficulty levels. The main model, shown in
blue, is compared against the three baseline models. The accuracy scores in the figures
are averaged across all testing samples, as described in subsection 5.3.

To begin with, the model performance increases steadily with increasing graph fre-
quency, contrary to our expectations. This effect is even more pronounced in the ad-
jacency-based model, which increases at a higher rate. The effect does not seem to de-
pend on the difficulty level, albeit being more pronounced at the easier difficulty level.
Crucially, the same effect is not present in the graph-based baseline models, whose per-
formance is constant across all graph frequencies, apart from the graph DC frequency.
While the two baselines outperform the model at lower frequencies, their accuracy is
slightly lower than the model at higher frequencies. Differences between the two base-
lines are not significant and seem to be negligible. The accuracy of the single channel
model, on the other hand, is trivially constant across all channels. As expected, the ac-
curacy is mostly lower than that of all other models. The accuracy of the lowest graph
frequency signal, namely the graph DC component, is by far the lowest for the three
graph-based models. Note that the graph Fourier mode corresponding to the graph DC
component is constant (Laplacian GFT) or near constant (adjacency GFT) across all
entries and thereby highly dense.

Table 1 shows the mean accuracy at high graph frequencies of each model. Only the
easiest simulated difficulty level was considered, as the effects are most pronounced at
this level. To compute the mean, the five highest graph frequencies were averaged, given
that all models have plateaued in this range. The adjacency-based main model leads the
table significantly with 87.0% accuracy, outperforming the Laplacian-based counter-
part by 1% point. The two graph-based baseline models have an accuracy of roughly
85%, irrespective of the graph representation used. The single channel baseline model
trails all other models, performing more than 5% points lower than the best-performing
model. These quantitative results indicate that our model significantly outperforms the
baseline models at high graph frequencies.

7 Discussion

In the experiment, we observed the effect that the performance of the classification
model increases with increasing frequency of the graph frequency signal. This suggests
that projections on low-frequency graph Fourier modes, which mix nearby channels, do
not amplify spectral features. Conversely, projections on high-frequency modes, which
mix channels from distant parts of the graph, seem to accumulate spectral features more
effectively. We hypothesise that the spectral features in closely connected channels are
similar, because spectral features may spread to nearby locations during the data gen-
eration. Features from distant channels, on the other hand, are better isolated from one
another, allowing them to contribute more diverse spectral features to the graph fre-
quency signals. The graph-based baseline models are in line with our hypothesis. Both
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Fig. 8: Classification accuracy as a function of the graph frequency of the transformed
signals. Three data sets with varying classification difficulty were simulated, whereby
the difficulty was controlled by modifying the filter h as shown in Figure 4(C). Easy,
medium, and difficult classification difficulties result in the high, medium, and low ac-
curacies overlaid in the figure, respectively. The model is shown in blue, while the
baseline models are shown in orange, green and red. Models using the graph Fourier
transform with the Laplacian (adjacency) matrix are shown in solid (dotted) lines. Note
that the single channel baseline model is not based on Graph Signal Processing (GSP)
and thereby does not make use of the adjacency or the Laplacian matrix. This also
means that its univariate signals are not ordered by graph frequency, but by graph node

models solely differ from the main model in that they use a graph unrelated to the data.
This means that projections on all non-DC modes mix channels from random location,
as shown in Figure 7. However, these patterns effectively correspond to mid-frequency
modes on the actual graph across all non-DC graph frequencies, which means that their
performance matches those of mid-frequency modes and does not change with graph
frequency.
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model graph mean accuracy [%] CI [%]
representation (5 highest frequ.)

GSP Laplacian 86.0 [85.8,86.1]
adjacency 87.0 [86.8,87.1]

GSP (nodes permuted) Laplacian 84.9 [84.7,85.0]
adjacency 84.9 [84.8,85.1]

GSP (random graph) Laplacian 85.1 [84.9,85.2]
adjacency 84.9 [84.7,85.0]

single channel – 81.7 [81.6,81.9]

Table 1: Mean accuracy of all tested models for the easiest simulated difficulty level,
averaged across the highest five graph frequencies. The model with the highest accuracy
is the main model based on Graph Signal Processing (GSP) which uses the adjacency
matrix for computing the graph Fourier transform, followed by the main model using
the Laplacian matrix. The model with the lowest accuracy is the single channel baseline
model, which is more than 5% points lower than the best-performing model

We further analyse effects due to the sparsity of the graph Fourier mode. To begin with,
the eigenmodes in the single channel baseline model are simply the rows of the identity
matrix and thereby maximally sparse. As expected, the performance of this model is
lower than that of all graph-based models at higher graph frequencies, possibly because
these modes do not source information from more than one channel, that is, their re-
ceptive field is minimal. The graph DC Fourier mode, on the other hand, is the mode
which is maximally dense. Even though its receptive field covers all channels, its per-
formance is nevertheless the lowest by far. We attribute the poor performance of highly
dense modes to interference effects: If too many channels are mixed together, spectral
features interfere with each other due to phase differences between the channels [87],
thereby attenuating these spectral features. Therefore, the graph Fourier modes with the
highest performance are those which are neither too sparse nor too dense. Importantly,
the permutation model baseline allows us to exclude that the main effect observed in the
model, namely the increase in performance with increasing graph frequency, is due to
the sparsity of the modes: While the sparsity of the permuted eigenmodes are the same
as those of the model, the main effect is not present in the permutation model.

Taken together, there seem to be two mechanisms at play that explain the performance
of the graph frequency signals. Firstly, the performance depends on how many spec-
tral features are accumulated during the transformation. While nearby channels share
spectral features, distant channels have different spectral features. Generally, only trans-
formations that are based on the actual graph can selectively mix nearby or distant
channels. Secondly, the more channels are mixed together, that is, the denser the graph
Fourier mode is, the more the channels interfere with each other. These two mechanisms
explain our main result, namely the superior performance of high-frequency graph fre-
quency signals, as follows: Projections on high-frequency graph Fourier modes mix
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only few, but distant channels together; hence, they optimally accumulate diverse spec-
tral features, while keeping interference effects in check.

Our observation that high-frequency graph frequency signals outperform both low-
frequency graph frequency signals as well as unaltered single channels may prove useful
for GSP-based applications such as dimensionality reduction or pruning of neural net-
works. However, note that the focus of our study was on understanding the specific role
of individual graph frequencies. Hence, our study did not explicitly test and compare
using a range of graph frequency signals for classification, which would almost cer-
tainly increase accuracy and thereby prove more useful for applications. An alternative
approach to dimensionality reduction is to reduce the dimensionality of the data in the
feature domain, instead of the signal domain, which has the advantage that interference
effects are avoided. Our method may be repurposed for feature selection by limiting
the spectral features to those of the most relevant channels, such as the channels that
contribute most to the high-frequency graph frequency signals.

Interestingly, the adjacency-based model outperforms the Laplacian-based model slightly
at higher graph frequencies. Following our interpretation of the results, this suggests
that projections on high-frequency adjacency-based graph Fourier modes may sample
more distant parts of the graph than their Laplacian-based counterparts. Generally, how-
ever, the choice of the graph representation for the GFT does not have a strong impact
on the results, which is in line with previous observations by Huang et al. [28].

The superior performance of high-frequency over low-frequency graph frequency sig-
nals aligns with results obtained by Ménoret et al. on fMRI data, who observed the
same effect for five out of the seven graphs they used, including a correlation-based
graph [27]. However, their results are contradictory: They also found that this effect
was reversed for a smooth graph optimised by minimising the TV with the algorithm by
Kalofolias [78]; however, we showed in subsection 4.1 that TV-optimised graphs share
crucial characteristics with correlation-based graphs. On the other hand, our main result
contradicts results obtained by Ouahidi et al., who found that keeping low-frequency
graph frequency signals leads to the highest classification accuracy on fMRI data [36].
We attribute this discrepancy to differences in the spectral and spatial structure between
neurophysiological signals such as EEG or MEG on the one hand, which we simulated
in our experiment, and fMRI signals on the other. Firstly, EEG and MEG signals have
arguably a richer spectral structure compared to fMRI signals, which means that in-
terference effects play a much greater role in those signals. Secondly, fMRI data have
a richer spatial structure: To illustrate this, Ouahidi et al. extracted a graph with 360
nodes from their data set, while our simulation was limited to a multivariate signal with
25 nodes. Both differences are likely to have an effect on the two proposed mechanisms
explaining our results.

Our simulated data may differ from real EEG or MEG data in crucial ways. To begin
with, the spatial structure of our simulated data is not very pronounced, i.d., the pair-
wise correlation-based functional connectivities does not vary much. In contrast, the
spatial structure in real-life EEG data is much more pronounced, which may partly be
the result of volume conduction effects. Additionally, the spectral structure may differ
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from real data as well. While the spectral structure in our simulation is enforced by
adding coloured noise, the spectral structure in real-life neuroimaging data may rely
more strongly on the network, forming spatio-temporal structures not present in our
simulation. Nevertheless, we argue that the generated data capture the essential char-
acterisics of neurophysiological signals relevant for GSP, as shown in Figure 4. Hence,
their analysis advocates the use of GSP for real-life neurophysiological EEG signals,
and gives valuable insight into possible GSP mechanisms.

8 Conclusion

In this book chapter, we have derived central GSP concepts theoretically, reviewed se-
lected applications of GSP, and investigated the meaning of graph frequency in GSP
experimentally, with applications to neuroimaging in mind. In our view, one of the most
significant challenges that GSP is currently facing is the ambiguity of the GFT, which
is due to the number of choices for how to retrieve the graph (see subsection 3.1) and
for which graph representation to use. To this end, we put the focus of this book chapter
on understanding, validating, and interpreting GSP concepts, rather than performance
optimisation.

The theoretical section of this book chapter aimed to give the reader a comprehensive
introduction into GSP concepts, and how they are derived. Importantly, we juxtapose
the alternative formulations of the GFT, and investigated similarities between these for-
mulations, which may guide researchers in selecting and interpreting a specific formula-
tion. Lastly, we explored links to established methods such as PCA, allowing the reader
to place GSP in a wider context.

From an empirical perspective, the ambiguity of the GFT highlights the need for a thor-
ough validation procedure. To this end, we have introduced a baseline testing framework
for GSP in subsection 5.4, consisting of a set of overall three baseline models. For our
experiment, we have developed a simulation algorithm to generate arbitrary amounts of
labelled multivariate signals. Using the simulated data, we have classified the datasets
by extracting spectral features from graph frequency signals and subsequently feeding
the features from each graph frequency signal into an SVM classifier. Our results link
the classification accuracy to the graph frequency, thereby enabling us to make infer-
ences about the expressiveness of the spectral features at each graph frequency. Specif-
ically, we obtained the result that high-frequency graph frequency signals outperform
both low-frequency signals, as well as all baseline models. The accuracy gradient be-
tween low-frequency and high-frequency signals may be leveraged for dimensionality
reduction or for pruning graph neural networks. Future work may be directed at test-
ing dimensionality reduction for classification on real-life neurophysiological datasets.
To use this method on EEG data, more sophisticated functional connectivity retrieval
methods may be required, as well as complex source-space reconstruction methods.

Generating the data proved useful for two reasons: On the one hand, it allowed us to
increase the precision of our results arbitrarily, laying bare the underlying GSP mech-
anisms. On the other hand, knowing how spectral features spread through the network
narrowed down possible interpretations of the results. Likewise, the baseline framework
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proved valuable, as it enabled us to pinpoint the measured effect to the graph structure
in the data. Together, our experiment showcased how a combination of simulating the
data and a strong validation procedure can propel our understanding of the mechanisms
behind GSP. We believe that the mechanisms uncovered here may ultimately inform the
design of GSP-based applications for neurophysiological signal processing.

Our study only tested simulated EEG-like multivariate signals. Further studies may
focus on simulating more realistic EEG datasets, as wells as simulating other imaging
modalitites such as fMRI, in order to find precise and modality-specific mechanisms in
GSP. Lastly, future work may also focus on gaining an understanding of mechanisms
underlying other GSP applications, such as graph filtering.
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