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Abstract— Multivariate signals are signals consisting of
multiple signals measured simultaneously over time and
are most commonly acquired by sensor networks. The
emerging field of graph signal processing (GSP) promises
to analyse dynamic characteristics of multivariate signals,
while at the same time taking the network, or spatial
structure between the signals into account. To do so, GSP
decomposes the multivariate signals into graph frequency
signals, which are ordered by their magnitude. However,
the meaning of the graph frequencies in terms of this
ordering remains poorly understood. Here, we investigate
the role the ordering plays in preserving valuable dynamic
structures in the signals, with neuroimaging applications
in mind. In order to overcome the limitations in sample
size common to neurophysiological data sets, we introduce
a minimalist simulation framework to generate arbitrary
amounts of data. Using this artificial data, we find that
lower graph frequency signals are less suitable for classify-
ing neurophysiological data than higher graph frequency
signals. We further introduce a baseline testing framework
for GSP. Using this framework, we conclude that dynamic,
or spectral structures are poorly preserved in GSP, high-
lighting current limitations of GSP for neuroimaging.

Keywords— multivariate signals, neurophysiological signals,
graph signal processing, graph Fourier transform.

I. INTRODUCTION

Multivariate signals arise in areas as diverse as biomedi-
cal imaging and geophysical signal analysis, where mul-
tiple spatially distributed sensors measure signals simul-
taneously. Unlike regular signals, multivariate signals
can capture both temporal and spatial characteristics
of the underlying system. The temporal characteristics
can be analysed with conventional signal processing,
e.g., by simply analysing each signal independently and
collating the results across the signals. On the other
hand, the spatial characteristics can be analysed using
spectral graph theory, where the connectivity structure
between the signals is determined and subsequently
analysed [1]. However, neither strategy analyses the
temporal and spatial characteristics jointly, possibly
disregarding valuable interactions between the two.

Graph signal processing (GSP) is a recent method that
allows to analyse the temporal characteristics while
simultaneously taking the underlying graph structure of
the signals into account [2]. Specifically, GSP uses the
underlying graph structure to transform the multivariate

signal by decomposing the graph in graph Fourier
modes. This transformation is called the graph Fourier
transform (GFT).

GSP has been employed for neurophysiological imag-
ing, such as functional magnetic resonance imaging
(fMRI) [3–6] or electroencephalography (EEG) [7–
9]. These applications include a wide variety of GSP
techniques, such as filtering of signals [4], spectral
decomposition and dimensionality reduction [3], or total
variation analysis [7]. GSP can also be used in an
inverse manner to retrieve the graph structure from a
multivariate signal [8]. This is achieved by finding the
graph that minimises the total variation, following the
assumption that the multivariate signal is smooth across
the graph. GSP techniques, such as graph spectral de-
composition, can be leveraged to improve classification
of neurophysiological signals [3], which commonly uses
temporal characteristics to derive biomarkers. However,
this means that the effective use of GSP for the classifi-
cation of neurophysiological signals hinges on how well
the GFT applied on multivariate signals preserves these
temporal structures, such as spectral features. In this
study, we therefore systematically evaluate the classifi-
cation performance restricted to each graph frequency,
giving insight into which graph frequencies preserve
these temporal structures best.

There are multiple choices not only to retrieve the graph
structure for a data set, but also to compute the graph
Fourier modes from this graph, making the GFT am-
biguous. Despite this ambiguity, recent applications of
GSP have paid little attention to validating the method
with suitable baseline models [7, 10]. To close this gap,
we introduce a set of baseline models, which either
distort or exclude the graph structure. Testing the model
against the set of baseline models allows to isolate and
estimate the specific value of taking the graph structure
into account.

Our contributions in this study can be summarised as
follows:

• We develop a minimalist simulation framework,
which captures the essential characteristics of mul-
tivariate signals;

• introduce a baseline testing framework for GSP;
and
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• determine to what extent dynamic structures are
preserved in GSP in dependence on the graph
frequency.

II. THEORY

II-A. Multivariate signals in biomedical imaging

Many brain imaging techniques, such as fMRI, EEG, or
magnetoencephalography (MEG), record multiple sig-
nals simultaneously in time at different spatial locations.
In fMRI, the signal locations are called voxels, whereas
in MEG and EEG they are called channels. For example,
an EEG measurement setup with Nc channels which
record the brain over a time period T at a sampling rate
f yields a data matrix X ∈ RNc×Nt , where Nt = ⌊ f ·T⌋
is the number of time samples. The i-th row of X
correspond to the temporal signal, or simply signal, at
location i and can be denoted as xi∗. On the other hand,
the j-th column corresponds to the spatial, or graph
signal at time sample j, which we denote as x∗ j.

II-B. Graphs

Formally, networks can be represented by a weighted
graph G := (V,A), which consists of N vertices V =
{1,2,3, ...,N} and the weighted adjacency matrix A ∈
RN×N , whose entries ai j represent the strength of the
connectivity between node i and node j. If the connec-
tivities between each pair of nodes are symmetric, or
ai j = a ji, then A is symmetric and the graph is said to
be undirected. Furthermore, if the diagonal elements aii
are all zero, meaning that the nodes are not connected
to themselves with loops, the graph is called a simple
graph.

A second, useful representation of a graph G is its
Laplacian matrix. The Laplacian can be directly com-
puted from the adjacency matrix A as L = D−A. Here,
D = diag(∑ j a1 j, ...,∑ j aN j) denotes the degree matrix.
While the weighted adjacency matrix can be viewed as
a graph shift operator, the Laplacian can be associated
with the negative discrete Laplace operator.

II-C. Graph retrieval

GSP transforms the multivariate signals using the graph,
or spatial structure which underlies the data. The re-
trieval of the graph is not unique in neuroimaging,
but can be based on the functional connectivity, the
structural connectivity, or the geometric location of the
sensors [7]. Even though some of these graph retrieval
methods can yield similar graphs in neuroimaging [11],
the choice of the graph retrieval method can have a
significant effect on the results [3] as well as on the
interpretation thereof.

In this study, the graph is based on the functional
connectivity between the signals. This method is purely
data-driven and can therefore be used on all data sets.
Common choices to build the graph include computing

pairwise Pearson correlations or covariances, but nonlin-
ear measures such as mutual information can be used
as well. As shown in subsection II-E, there is a link
between GFT using functionally retrieved graphs and
principal component analysis.

II-D. Graph Fourier Transform

The GFT is an extension of the Fourier transform
to graphs and is at the heart of GSP. Let G be a
weighted, undirected graph without loops. The eigen-
decomposition of the Laplacian L of graph G is given
by L=QΛQ⊤. The eigenvalues λi of G are the diagonal
elements of Λ and real-valued, sorted in ascending
order, whereas the eigenvectors vi are the orthogonal
columns q∗i of Q. Alternatively, the weighted adjacency
matrix or the symmetrically normalised Laplacian can
be used instead of the Laplacian [2, 12, 13].

The GFT, which transforms a spatial signal x ∈ RNc

into its graph spectral representation x̃, is then simply
defined as:

x̃ = GFTx := Q⊤x. (1)

Here, GFT denotes the graph Fourier transform matrix.
The i-th row of GFT corresponds to the graph Fourier
mode at graph frequency i, which is given by the eigen-
vector vi. Likewise, a multivariate signal X ∈ RNc×Nt ,
where each column x∗ j corresponds to a spatial signal
at time sample j, can be transformed column-wise:
X̃ = GFT X. The rows x̃i∗ of the transformed multi-
variate signal X̃ are the transformed signals, which are
associated with the eigenvalues λi.

For the Laplacian, the graph Fourier modes are eigen-
vectors of the discrete Laplace operator, which is a
second-order differential operator in space. In the same
way, classical Fourier modes ei2π f t with frequency f
are eigenfunctions of the second partial derivative with
respect to time t. This analogy links the classical
Fourier transform to the graph Fourier transform. If the
adjacency matrix is used instead, the analogy becomes
less obvious theoretically and may only hold for spe-
cial cases such as the cyclic shift graph, because the
adjacency matrix does not correspond to a differential
operator.

It can be shown that the ordering of the eigenvalues can
be linked to the ordering of the graph frequencies [13],
enabling us to refer to the transformed signals as ordered
graph frequency signals. If the Laplacian matrix is used
in the GFT, higher eigenvalues correspond to higher
graph frequencies, whereas if the adjacency matrix is
used, higher eigenvalues correspond to lower graph
frequencies. Note that in the latter case, eigenvectors
with higher graph frequencies have lower weights in
the eigendecomposition, meaning that these frequencies
contribute less to the adjacency matrix. However, this
suggests that transformed signals with higher graph
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frequencies may only weakly depend on the adjacency
matrix, and thereby the spatial structure.

II-E. Link to principal component analysis (PCA)

Principal component analysis (PCA) projects multivari-
ate samples onto a set of orthogonal components, which
are the eigenvectors of the covariance matrix of the data
set. Crucially, if the covariance matrix is used for the
GFT, then GFT and PCA are mathematically equivalent.
Note that for normalised signals with standard deviation
one, which is common for some neurophysiological
signals such as EEG signals, the correlation and the
covariance matrix are the same. Note also that the
diagonal entries of the signal correlation matrix are one
and will not affect the eigenvectors. In other words,
using the correlation matrix of normalised signals with
or without diagonal elements for GFT is equivalent to
PCA.

II-F. Baseline models

We compose a set of three baseline models, which either
distort the graph in GSP, or use conventional signal
processing. The goal of all three models is to isolate
the boost in performance as a result of using the graph
structure underlying the data.

The first baseline model is the permuted nodes GSP
model, which uses the graph underlying the data, but
randomly permutes the nodes of this graph. In this way,
the eigenmodes have the same weights as the actual
model, but at different locations. Therefore, the model
distorts the graph structure, while retaining the effect
of the weight magnitudes. The second, related baseline
model is the random graph GSP model, which uses GSP
with a randomly generated graph. While this model
transforms the data using GFT, these transformations
are not based on the actual graph structure. The third
baseline model is the single channel model, which does
not transform the data and is equivalent to conventional
signal processing. It can also be viewed as GSP with the
identity transform, which is given by the identity matrix
1. Note that the "graph Fourier modes" are given by
the single channels and have no natural ordering, which
can also be seen by the fact that the eigenvalues of the
identity matrix are degenerate. This model is the only
model that excludes the graph structure, making it an
indispensable baseline model.

III. METHODOLOGY

III-A. Simulated data set

We developed Algorithm 1 to generate multivariate sig-
nal samples Xsim ∈RNc×Nt with Nc channels and Nt time
samples. The generated samples simulate neuroimaging
measurements, such as EEG, with which they share
two crucial characteristics: Firstly, the samples have an
underlying graph structure, such that each pair of signals

Algorithm 1 Dynamic neuroimaging data generation
Input Nt , As, h, α , β , γ

Output X
1: εi j, ε̃i j ∼N (0,12), i = 1, ...,Nc, j = 1, ...,Nt
2: ε̂εε i∗←

(
F−1 ◦h◦F

)
(ε̃εε i∗), i = 1, ...,Nc

3: x∗1← β ε̂εε∗1
4: for t← 2,Nt do
5: x̂∗t−1← x∗t−1− x̄∗t−1 + γεεε∗t
6: x∗t ← αAsx̂∗t−1 +β ε̂εε∗t
7: end for

has a specific connectivity associated to it. Secondly, the
temporal signals have a specific spectral profile.

The algorithm takes as input the number of generated
time samples Nt , the weighted adjacency matrix As ∈
RNc×Nc , the filter function h, as well as parameters α ,
β and γ . While As controls the connectivity, or spatial
structure, the filter function h controls the spectral pro-
file. Specifically, using two filter functions h1 and h2 al-
lows to generate data samples with two conditions. The
similarity between the two filter functions controls the
difficulty of classifying the conditions. This simulates,
for example, EEG data where multiple conditions, such
as Alzheimer’s disease or healthy control, each have a
specific spectral profile [14]. Parameter α controls the
strength of the correlation structure, while parameter β

controls the strength of the spectral structure. Parameter
γ controls the self-amplification of the signals during the
simulation.

In each time step of Algorithm 1, we firstly centre the
graph signal of the previous time step x∗t−1 around zero
and add Gaussian noise γεεε∗t to this signal (line 5).
Secondly, we use the adjacency matrix As as a graph
shift operator to translate the graph signal in time, which
enforces the structural connectivity As in our data (line
6). Thirdly, we scale the translated signal by α and
add normalised coloured noise ε̂εε∗t scaled with β , whose
spectral density profile is controlled by the filter h (line
6). Finally, the simulated multivariate signal is labelled
with its condition.

We used three different filter functions h2 for condition
2 (orange lines in Figure 1(c)), resulting in overall three
data sets which are either easy, medium or difficult to
classify. The connectivity structure matrix As ∈ R23×23

was generated by drawing weights as
i j ∼U[−0.1,0.4] from

a uniform distribution for i> j, and setting as
ii = 0.4 and

as
ji = as

i j. We set the simulation parameters to α = 0.5,
β = 1, and γ = 1. For each simulated participant, we
generated Nc = 23 time-series signals with Nt = 2048
time samples each.

Figure 1 shows the simulated signals (a) along with
their spatial (b) and spectral (d) structure. The spectral
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Figure 1. Simulated neurophysiological signals. (a) Time signals for four selected channels across the first 100 samples. Channels
#2, #3 and #4 are positively, weakly and negatively correlated to channel #1, respectively. (b) Distribution of correlations of
channel pairs, exhibiting the spatial connectivity structure. In the simulation, this structure is controlled by the matrix As, but it is
also affected by the simulation parameters. (c,d) Demonstration of power spectral density control and adjustment of classification
difficulty. (c) The Fourier filter function h used to colour the noise in Algorithm 1, assuming a sampling frequency of 256 Hz.
For each data set, two conditions are simulated. Condition 2 can be varied to make it easy (solid), medium (dashed), or difficult
(dotted) to distinguish from condition 1. The difficulty depends on the similarity between the two conditions. (d) Welch power
spectral density of simulated signals averaged across all channels for two easily distinguishable conditions. Figures (c) and (d)
clearly show that the shape of the power spectral density profile of the simulated signals can be controlled. Parameter α in
Algorithm 1 can be used to reduce the power density at lower frequencies

structure (d) of the simulated signals is enforced by the
spectral density profile of the coloured noise (c), demon-
strating that the spectral structure can be controlled.

III-B. Analysis

The goal of the analysis is to GFT-transform the
multivariate signal into graph frequency signals and
subsequently classify the samples into the two condi-
tions, using only one graph frequency signal at a time.
This approach allows us to determine the classification
performance for each graph frequency, which we use to
assess how well dynamical structures are preserved at
this frequency.

The first step of the analysis consists of retrieving the
graph structure from the training samples, for which we
used the functional connectivity. Note that we need to
use the same graph for all samples to keep the graph
Fourier modes constant. Specifically, we computed the
correlation matrix for each sample in the training set and
subsequently averaged all matrices, yielding a common
weighted adjacency matrix. Secondly, we carried out the
GFT, yielding Nc = 23 graph frequency signals. We used
the weighted adjacency and the Laplacian matrix for the
GFT in two separate experiments. Thirdly, we extracted

spectral features from those signals for each sample.
To this end, we computed the Welch power spectral
density with a window of 128 for each transformed
signal, removed the last 28 values, and downsampled
the remaining 100 values by averaging five values each,
yielding 20 features per graph frequency. Lastly, we
trained a support vector machine classifier separately for
each graph frequency to classify the labelled samples,
using only the 20 features calculated from the graph
frequency signal. The baseline models are analysed
following the same steps, except that the graph in the
GFT was replaced as described in subsection II-F.

III-C. Testing

Generating the data matrices is time-consuming, as one
simulation step is needed for each time sample. We
therefore used a modified, perpetual version of cross-
validation, illustrated in Figure 2. Initially, Ns = 100
samples are generated, divided evenly in condition 1
and condition 2. This data set is split into k = 10 folds,
nine of which are used for training. This results in 90
training samples, mimicking the sparsity of samples in
neuroimaging. The remaining fold is used for testing,
resulting in 10 testing samples per iteration. For the
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Figure 2. Illustration of the perpetual cross-validation used
during the analysis. The whole data set is split into k = 10
folds. One fold is assigned to be the testing set, while the
remaining k − 1 folds comprise the training set. For the
subsequent iteration, a fold with newly generated data is added
to the training set, while the testing fold is shifted by one fold

subsequent iteration, data is generated to form a new
fold with Ns/k = 10 samples, which is added to the
training set, whereas the testing fold is shifted by one
fold. The final accuracy scores are averaged across all
samples in the testing set and across all iterations. As a
result of varying the number of iterations per model, our
main model was tested on overall 5000 testing samples,
whereas the permuted nodes GSP, random graph GSP,
and single channel baseline model were tested on 5000,
4000, and 2000 testing samples, respectively.

The advantage of this perpetual version of cross-
validation is that it can have arbitrarily many iterations,
while at the same time reusing each fold k-times. It
further does not require much storage, as used samples
can be overwritten with newly generated samples.

IV. RESULTS

Figure 3 illustrates the results of our analysis of the arti-
ficially generated data. Specifically, it shows the classi-
fication accuracy in dependence on the graph frequency
of the transformed signal for three simulated difficulty
levels. The main model, shown in blue, is compared
against the three baseline models. The accuracy scores
in the figures are averaged across all testing samples, as
described in subsection III-C.

The accuracy of the graph DC component is by far the
lowest. This can be understood by considering the case
of the Laplacian matrix: When using this matrix for
the GFT, the graph DC component is equivalent to the
average across all signals. However, when averaging the
signals, some temporal structures in the signals are also
averaged out.

The model performs worse at lower graph frequen-
cies than all GSP-based baseline models, and only
equally well than the single channel baseline model.
The relatively poor performance of the single channel
baseline model can be attributed to the fact that, as
opposed to all other models, this model does not gather
spectral structures from more than one signal, giving the
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Figure 3. Classification accuracy as a function of the graph
frequency of the transformed signals. Three data sets with
varying classification difficulty were simulated, whereby the
difficulty was controlled by modifying the filter h as shown
in Figure 1(c). Easy, medium, and difficult classification
difficulties result in the high, medium, and low accuracies
overlaid in the figure, respectively. The model is shown in
blue, while the baseline models are shown in orange, green
and red. Note that the single channel baseline model in red
does not have a graph frequency ordering. Models using the
GFT with the Laplacian (adjacency) matrix are shown in solid
(dotted) lines

classifier less information to use. For easy to classify
data sets, our model perform slightly better than the
baseline models at higher graph frequencies.

The choice of the specific graph representation for the
GFT does not have a strong impact on the results, which
has been reported earlier[10]. Further, we show that our
results are replicated for various difficulty levels.

V. DISCUSSION AND CONCLUSION

In this study, we have developed a neuroimaging data
generation algorithm, which dynamically generates ar-
bitrarily many samples. We have demonstrated that this
data has a spatial connectivity structure, as well as a
controllable spectral structure. However, our simulated
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data may differ from real data in crucial ways. For
example, the spectral structure is enforced by adding
coloured noise, and does not primarily arise out of
the network interaction, which however may be the
case for real-life neuroimaging data. Nevertheless, we
uphold that the generated data capture the essential
characterisics of neurophysiological signals relevant for
GSP, as demonstrated in Figure 1, and hence that their
analysis allows to draw some general conclusions about
GSP applied to real-life neurophysiological signals.

One limitation of GSP for neuroimaging is the ambigu-
ity of the GFT, which is due to the number of choices for
how to retrieve the graph (see subsection II-C) and for
which graph representation to use. These limitations, in
combination with the novelty of the method, highlight
the need for a thorough validation procedure for GSP, as
opposed to basing it mainly on theoretical justifications.
To this end, we have introduced a baseline testing
framework for GSP in subsection II-F, consisting of a
set of overall three baseline models. Note that the GFT
can be linked to the PCA, as shown in subsection II-E,
making the PCA unsuitable as a baseline model.

Using the artificial data, we have systematically eval-
uated the classification performance of single graph
frequency signals in terms of their graph frequency. We
found that higher graph frequencies outperform lower
ones, which is in line with the results obtained in [3].
This specific result may not generalise to all neurophysi-
ological data sets, simulated or real-life, because it may
depend on the precise interaction between the spatial
and the spectral structure. The result is nevertheless
surprising, as we expected lower graph frequencies
to preserve temporal structures better, given that they
are composed of more closely related channels. We
further found that even at higher graph frequencies our
model performs only marginally better than the baseline
models. Note also that higher graph frequencies may
not relate much to the spatial structure, as pointed
out in subsection II-D. Taken together, our results do
not suggest that GSP leverages the spatial structure to
improve spectral feature-based classification.

One possible explanation for this result is that in order
to GFT-transform the signals, the signals are mixed and
therefore interfere with each other, which leads to an
attenuation of the spectral features. This shortcoming
may limit the application of GSP for EEG, where the
dynamic structure, i.e., the spectral features, is crucial to
characterise the data, but it may also impose limitations
for applying GSP to neurophysiological data in general.
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